A persistent RNA·DNA hybrid formed by transcription of the Friedreich ataxia triplet repeat in live bacteria, and by T7 RNAP in vitro
نویسندگان
چکیده
Expansion of an unstable GAA.TTC repeat in the first intron of the FXN gene causes Friedreich ataxia by reducing frataxin expression. Deficiency of frataxin, an essential mitochondrial protein, leads to progressive neurodegeneration and cardiomyopathy. The degree of frataxin reduction correlates with GAA.TTC tract length, but the mechanism of reduction remains controversial. Here we show that transcription causes extensive RNA.DNA hybrid formation on GAA.TTC templates in bacteria as well as in defined transcription reactions using T7 RNA polymerase in vitro. RNA.DNA hybrids can also form to a lesser extent on smaller, so-called 'pre-mutation' size GAA.TTC repeats, that do not cause disease, but are prone to expansion. During in vitro transcription of longer repeats, T7 RNA polymerase arrests in the promoter distal end of the GAA.TTC tract and an extensive RNA.DNA hybrid is tightly linked to this arrest. RNA.DNA hybrid formation appears to be an intrinsic property of transcription through long GAA.TTC tracts. RNA.DNA hybrids have a potential role in GAA.TTC tract instability and in the mechanism underlying reduced frataxin mRNA levels in Friedreich Ataxia.
منابع مشابه
Molecular and Clinical Investigation of Iranian Patients with Friedreich Ataxia
Background: Friedreich ataxia (FRDA) is an autosomal recessive disorder caused by guanine-adenine-adenine (GAA) triplet expansions in the FXN gene. Its product, frataxin, which severely reduces in FRDA patients, leads to oxidative damage in mitochondria. The purpose of this study was to evaluate the triple nucleotide repeated expansions in Iranian FRDA patients and to elucidate distinguishable ...
متن کاملMolecular pathogenesis of Friedreich ataxia.
Friedreich ataxia, the most common type of inherited ataxia, is itself caused in most cases by a large expansion of an intronic GAA repeat, resulting in decreased expression of the target frataxin gene. The autosomal recessive inheritance of the disease gives this triplet repeat mutation some unique features of natural history and evolution. Frataxin is a mitochondrial protein that has homologu...
متن کاملRole of mismatch repair enzymes in GAA·TTC triplet-repeat expansion in Friedreich ataxia induced pluripotent stem cells.
The genetic mutation in Friedreich ataxia (FRDA) is a hyperexpansion of the triplet-repeat sequence GAA·TTC within the first intron of the FXN gene. Although yeast and reporter construct models for GAA·TTC triplet-repeat expansion have been reported, studies on FRDA pathogenesis and therapeutic development are limited by the availability of an appropriate cell model in which to study the mechan...
متن کاملFXN Promoter Silencing in the Humanized Mouse Model of Friedreich Ataxia
BACKGROUND Friedreich ataxia is caused by an expanded GAA triplet-repeat sequence in intron 1 of the FXN gene that results in epigenetic silencing of the FXN promoter. This silencing mechanism is seen in patient-derived lymphoblastoid cells but it remains unknown if it is a widespread phenomenon affecting multiple cell types and tissues. METHODOLOGY / PRINCIPAL FINDINGS The humanized mouse mo...
متن کاملReversal of epigenetic promoter silencing in Friedreich ataxia by a class I histone deacetylase inhibitor
Friedreich ataxia, the most prevalent inherited ataxia, is caused by an expanded GAA triplet-repeat sequence in intron 1 of the FXN gene. Repressive chromatin spreads from the expanded GAA triplet-repeat sequence to cause epigenetic silencing of the FXN promoter via altered nucleosomal positioning and reduced chromatin accessibility. Indeed, deficient transcriptional initiation is the predomina...
متن کامل